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Abstract

The previously developed LBM–DLM/FD method derived from the lattice Boltzmann method and the distributed
Lagrange multiplier/fictitious domain method is extended to deal with 3D fluid–structure interactions. In our current algo-
rithm, the fluid motion is solved by LBM, the deformation of the solid body is solved by the finite element method, and the
Lagrange multiplier is solved on the low-order mesh. Three numerical examples are employed to validate the LBM–DLM/
FD method and reveal the potential of the method to deal with the fluid/elastic-body interaction problems.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Fluid–structure interactions widely exist in various kinds of phenomena in nature and engineering. Partic-
ularly in the biomechanics field (e.g. blood flow in elastic vessels [1], aortic or heart valves [2], deformations
and aggregations of the red blood cells and white blood cells [3], cell adhesion [4], cell trap and separation), the
mechanism of fluid–structure interactions plays a key role. As an alterative method to laboratory experiments,
numerical simulation attracts more and more interests of researchers. A variety of numerical methods for the
fluid–structure systems have been developed from different backgrounds.

Generally, it is convenient for the flow field to be solved in the Eulerian frame where the mesh is fixed,
whereas the Lagrangian description is more suitable for the solid deformation and motion. In the fluid–struc-
ture system, a straightforward strategy for the fluid–structure coupling is to directly treat the fluid–structure
interface as a moving boundary of fluid mesh, as in the conventional ALE (arbitrary Lagrangian–Eulerian)
method [5]. The accuracy of the fluid–structure interface presented on the fluid mesh is guaranteed, but the
trade-off is mesh updating due to the moving interface and re-meshing due to the large deformation of the
interface or the too distorted mesh. The re-meshing procedure is always time-consuming and difficult in
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complex topology. Moreover, when the solid deformation is large and the geometry is complex, the algorithm
cannot keep robust [2].

Another algorithm of coupling the fluid and the structure is accomplished by proposing a pseudo body
force like multiplier to constrain the fluid velocity and structure velocity. The fluid mesh is independent of
the motion of solid mesh. The algorithms of distribution and interpolation are adopted to impose the
fluid–structure coupling on each fluid or solid mesh. The re-meshing is not required. The original immersed
boundary (IB) method of Peskin [6] was developed for the volumeless flexible solid body submerged in flow,
and its capacity has been enhanced by other variants such as immersed finite element method (IFEM) [7]. The
fictitious domain method (FDM) was firstly proposed for particulate flows [8,9], and then extended to fluid/
elastic–structure interactions [10,11]. Both IFEM and FDM for flexible structures are more accurate and real-
istic than original IB because the solid problem is solved by finite element method rather than using fiber net-
work presentation and volumelessness assumption in IB.

The lattice Boltzmann method (LBM) has been widely used in different areas of computational fluid
dynamics (CFD) as an alternative choice to its continuum counterpart [12,13]. In the area of fluid–structure
interactions, the bounce-back rule was first introduced to impose the fluid–structure coupling [14]. It was
proved robust and efficient for particulate flows, especially in the case of large number of particles. The
bounce-back rule was also applied to fluid/rigid–structure interactions [15], fluid–membrane interactions
[16] and fluid/flexible–elastic-body interactions [17]. Later, the IB method was incorporated successfully into
LBM for the 2D and 3D fluid–particle systems [18]. Recently, the LBM–DLM/FD method [19], which com-
bines the ideas of the LBM and FDM, has been proposed for the two-dimensional fluid/elastic–structure
interactions.

The aim of the present study is to extend the LBM–DLM/FD method from 2D to 3D. The new idea is the
combination of LBM and FD method, which lets the proposed LBM–DLM/FD method inherit the advanta-
ges of both methods. Compared with IB based method, the LBM–DLM/FD method has the potential to deal
with more general solid sub-problems. In the following sections, we first briefly describe the roots of the LBM–
DLM/FD method: DLM/FD and LBM. Subsequently, we present the equations of LBM–DLM/FD for
fluid–structure interactions. Finally, the method is applied to three numerical examples, a plate in a channel
flow, the flow past two spheres placed side by side and a spherical shell in a duct flow to validate the algorithm
and demonstrate the capability of the method.
2. Mathematical formulation

2.1. DLM/FD method

Before the presentation of our method, let us briefly introduce the fictitious domain method for fluid–
elastic structure interaction. The FDM was initially designed for fluid/rigid-body system. In recent years,
the fictitious domain/mortar element method [10] and the DLM/FD method [11] have been proposed for
the fluid/elastic–structure interactions by considering the elastic-solid governing equations. We prefer the
DLM/FD formulation for its greater generality. The basic idea of fictitious domain method is to fill the
solid domain with fluid, which simplifies the fluid boundary geometry greatly. The distributed Lagrange
multiplier (DLM) is introduced to impose the kinematical constraint in the solid domain, or the fictitious
fluid domain. Let us use Xf and Xs to define the extended fluid and structure domain, respectively. The
weak-form equations of DLM/FD method for the elastic structure immersed in a Newtonian fluid are
expressed as [11]:
Z

Xf

qf

ouf

ot
þ uf � ruf � f f

� �
� uf dXf þ

Z
Xf

ð�pIþ gðruf þ ðrufÞTÞÞ : ruf dXf �
Z

Xf
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Xs
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Z
Xs

ðus � ufÞ � c dXs ¼ 0; ð4Þ
where u is the velocity, q is the mass density, f is the body force and r is the stress and the subscripts f and s are
introduced to differentiate between the variables of the fluid and structure, respectively. p denotes the fluid
pressure, g is the dynamic viscosity of the fluid. k is the Lagrange multiplier. uf, wf, us and c are the corre-
sponding weight functions for the fluid velocity, the fluid pressure, the solid displacement and the Lagrange
multiplier, respectively. When the constitutive equations for solid are added, the above equations are closed.

The above equations can be solved by either the full coupling method or decoupling method. The full cou-
pling method solves all variables at the same time [2]. The decoupling method [11] is a fractional step method
that decomposes the entire system into several sub-systems. Although the decoupling method is expected to be
less accurate than the full coupling method, it is simpler and much more efficient, and therefore is used in the
present study.

2.2. Lattice Boltzmann method

Unlike the classic macroscopic fluid equations, lattice Boltzmann equation describes the fluid flow from the
microscopic kinetics theory. In order to work with DLM, the discrete Lattice Boltzmann equations of single
relaxation time model with external body force are required [12,13,20]:
fiðt þ dt; xþ eidtÞ ¼ fiðt; xÞ �
1

s
ðfi � f eq

i Þ þ
f f � ðei � ufÞ

c2
s

f eq
i dt; ð5Þ
where fi(t,x) is single-particle distribution function on the i-direction microscopic velocity ei, as shown in
Fig. 1, ff is the external force, s is the relaxation time, associating with the kinetic viscosity of fluids, dt denotes
the time step, Xi ¼ �1

sðfi � f eq
i Þ is called the collision operator, uf, qf are the macroscopic velocity and mass

density of the fluid, obtained from the distribution functions as follows [12]
qf ¼
X

i

fi; qfuf ¼
X

i

fiei: ð6Þ
For 3DQ15 model [21] shown in Fig. 1:
e0 ¼ ð0; 0; 0Þ;

e1 ¼ ð1; 0; 0Þ
dx

dt
; e2 ¼ ð�1; 0; 0Þ dx

dt
; e3 ¼ ð0; 1; 0Þ

dx

dt
;

e4 ¼ ð0;�1; 0Þ dx

dt
; e5 ¼ ð0; 0; 1Þ
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dt
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dt
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Fig. 1. D3Q15 model.
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where dx is the lattice spacing. The corresponding equilibrium function can be chosen in the following form
[12]:
f eq
i ¼ wiqf 1þ 3

c2
ðei � ufÞ þ

9

2c4
ðei � ufÞ2 �

3

2c2
u2

f

� �
; ð8Þ
c = dx/dt and cs ¼ c=
ffiffiffi
3
p

is called the sound speed. The weight factors of D3Q15 are:
w0 ¼
2

9
;

wi ¼
1

9
; i ¼ 1–6;

wi ¼
1

72
; i ¼ 7–14:

ð9Þ
With the help of the Chapman–Enskog procedure, the macroscopic mass and momentum equations can be
recovered from the lattice Boltzmann equations [12,22]:
oqf

ot
þr � ðqf ufÞ ¼ 0; ð10Þ

oðqfufÞ
ot

þr � ðqf ufufÞ ¼ r � ð�c2
s qfIþ qfmðruf þruT

f ÞÞ þ qf ff : ð11Þ
In the D3Q15 models, the kinematic viscosity is m ¼ 1
6
ð2s� 1Þd

2
x

dt
. If fi ¼ f eq

i þ ef 1
i þ e2f 2

i þOðe3Þ, the fluid stress
tensor is [12]
rf ¼ �c2
s qf I� 1� 1

2s

� �X
i

f 1
i eiei; ð12Þ
where e is the small parameter in Chapman–Enskog procedure. In the limit case of incompressible fluid, which
requires |uf|� |ei|, the evolution equation (Eq. (5)) is simplified to:
fiðt þ dt; xþ eidtÞ ¼ fiðt; xÞ �
1

s
ðfi � f eq

i Þ þ
widtqf

c2
s

ðf f � eiÞ: ð13Þ
2.3. LBM–DLM/FD method

Compared with the Navier–Stokes equations, there are no nonlinear convection terms in the lattice Boltz-
mann equations. Every lattice has relations only with its neighborhoods at each time step, which facilitates
parallel coding. The pressure is directly obtained. So we decide to replace the macroscopic fluid equations
by the lattice Boltzmann equations. The role of the Lagrange multiplier is not only the constraint for the veloc-
ity but also can be regarded as a pseudo body force, which makes it possible to substitute k to qfff in the LBEs.
That yields our LBM–DLM/FD equations:
fiðt þ dt; xþ eidtÞ ¼ fiðt; xÞ �
1

s
ðfi � f eq

i Þ þ
widt

c2
s

ðk � eiÞ; ð14Þ
Z

Xs

ðqs � qfÞ
dus

dt
� ðqsfs � qf ffÞ

� �
: us dXs þ

Z
Xs

rs � rfð Þ : rus dXs þ
Z

Xs

k � us dXs ¼ 0; ð15Þ
Z

Xs

ðus � ufÞ � c dXs ¼ 0: ð16Þ
We decouple the entire system into the fluid and solid sub-problems with the fractional step scheme in the
same manner as in the DLM/FD [11]. The present fractional step scheme is the following:

(1) Assuming that f n
i , kn at the time step n is given, calculate f �i from Eq. (5) without the collision operator

and then q�f and u�f from Eq. (6). Here, the superscript ‘‘*’’ denotes an intermediate fractional step.
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(2) Based on Eq. (15) and the solid constitutive equations, find the solid displacement dnþ1
s with the finite

element method. The nonlinear equations are solved by the Newon–Raphson iterative method.
(3) Using the first-order accurate scheme, calculate the solid velocity from unþ1

s ¼ dnþ1
s �dn

s

dt
. Together with the

velocity constraint (16) and the idea of the fractional time scheme, compute kn+1 from the following
equation:
Z

Xs

knþ1 � us dXs ¼
Z

Xs

kn � us dXs þ
Z

Xs

q�f
unþ1

s � u�f
dt

� �
� us dXs: ð17Þ
(4) Calculate the intermediate distribution function f ��i from:
f ��i ¼ f �i þ
widt

c2
s

ðknþ1
f � kn

f Þ � ei

� �
: ð18Þ
(5) Calculate the distribution function f nþ1
i at the time step n + 1 from:
f nþ1
i ¼ f ��i �

1

s
ðf ��i � f eq��

i Þ: ð19Þ
3. Applications

3.1. Plate in a flow between two planes

As shown in Fig. 2, a plate is placed in a pressure-driven flow between the top and bottom planes with the
distance L. The plate is located symmetrically about the spanwise center plane. The wall boundary condition is
enforced on the top and bottom planes, and the periodic boundary condition is imposed in the spanwise
direction.

First, we will examine the Lagrange multiplier for its role in the fluid and solid interactions. In this test, the
plate is considered rigid and fixed so that only the LBE and the Lagrange multiplier updating equations are
taken into account. Two mesh systems, listed in Table 1, are utilized for comparison. The Reynolds number is
defined as Re ¼ L3G

8m2 where G is the magnitude of pressure gradient, and is same for the two cases. The fluid
mass density and the streamwise gradient are 1.0 and 6.0 · 10�4, respectively.

Under the flow condition in this example, the force exerted on the plate by the fluid can be calculated in a
straightforward manner from Lagrange multiplier without using the stress on the interface:
Fs ¼ �
Z

Xs

k dXs: ð20Þ
The results from the classic LBM, where the bounce-back rule is applied on the plate to ensure the no-slip
boundary, are utilized as the benchmark. In the bounce-back rule for a stationary wall, if a boundary exists
LU
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Fig. 2. A plate in a channel flow.



Table 1
The mesh systems

Fluid Lagrange multiplier

Mesh number Domain size Mesh number Domain size

Mesh 1 160 · 30 · 30 160 · 30 · 30 1 · 10 · 20 1 · 10 · 20
Mesh 2 320 · 60 · 60 320 · 60 · 60 1 · 20 · 40 1 · 20 · 40
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between x and x + ei dt, i is called a boundary link. The distribution function in the reflected direction i 0 is
obtained as:
Table
Result

Mesh
Mesh
fi0 ðt þ dt; xÞ ¼ fiðtþ; xÞ; ð21Þ

where t+ means post-collision. Due to the increment of momentum, the impulsive force exerted on the bound-
ary along the link reads [23]:
Fp t; xþ 1

2
eidt

� �
¼ 2f iðtþ; xÞ

dt
ei: ð22Þ
The total force on the plate is the summation of the force along all boundary links:
Fs ¼
X

Fp t þ xþ 1

2
eidt

� �
: ð23Þ
The errors in velocity and pressure at the final steady state listed in Table 2 are defined as following:
Ev ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

all nodesðuDLM � uBKÞ � ðuDLM � uBKÞ
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
all nodesuBK � uBK

p ; Ep ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
all nodesðpDLM � pBKÞ

2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
all nodes p2

BK

p : ð24Þ
The force derived from bounce-back rule is used to scale the hydrodynamic force in streamwise direction, i.e.
F �x ¼ F DLMx=F BKx. The subscripts ‘DLM’ and ‘BK’ denote the distributed Lagrange method and the bounce-
back rule, respectively.

Table 2 shows that the results of LBM–DLM are close to the classic LBM with bounce-back rule, partic-
ularly in the case of fine mesh. To demonstrate more details, velocity contours in two characteristic planes in
the streamwise direction from two methods with Mesh2 are compared in Fig. 3. One characteristic plane is the
middle plane vertical to z-axis, called MXY, and the other is the middle plane vertical to y-axis, called MXZ.

We can find in Fig. 3 that the flow field solved using LBM–DLM is very close to that using LBM with
bounce-back rule except some areas in the vicinity of the plate. Table 2 and Fig. 3 indicate that the Lagrange
multiplier properly imposes the fluid–structure coupling, which gives the correct flow field and hydrodynamic
force on the structure.

Then we consider the elastic deformation of the plate. To describe the constitutive relationship of solid
structure, let X be the undeformed configuration of solid and x be the deformed current configuration. The
deformation gradient is given by:
F ¼ ox

oX
ð25Þ
and the related right Cauchy–Green tensor is C = FTF. The solid adopted here is the neo-Hookean material
defined by the strain energy density per unit [24,25] :
2
s in two mesh systems

Ev Ep F �x

1 0.0305 0.004412 1.201
2 0.0143 0.000317 1.053
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W ðCÞ ¼ l
2
ðtrðCÞ � 3Þ � l log J þ k

2
ðlog JÞ2; ð26Þ
where J = det(F). The corresponding second Piola–Kirchhoff stress tensor can be derived as:
S ¼ 2
oW
oC
¼ lðI� C�1Þ þ k log JC�1 ð27Þ
and the Cauchy stress is presented as:
r ¼ J�1F � S � FT: ð28Þ

In the present example, the size of fluid domain is 160 · 30 · 30 and the size of the plate is 0.5 · 20 · 10 with
respect to the x–y–z directions. The plate is discretized into 72 27-node elements and placed 70 away from the
inlet of the channel. One of the plate end is fixed on the bottom wall of the channel at y = 0. The relaxation
time and the fluid mass density are given as 0.95 and 1.0, respectively. The oscillatory streamwise pressure gra-
dient is:
dp
dx
¼ P 0 sin

2p
T

t
� �

; ð29Þ
where P0 is the amplification, being 1.5 · 10�4, t is the time and T is the period. The solid has same mass den-
sity as the fluid and the material parameters are l = 100 and k = 1.0 · 104. The flow and the plate start from
stationary state with all the velocities being zero.

Fig. 4 shows the streamlines over the deformed plate and the velocity projections on the MXY plane at
different times. The plate swings due to the oscillation of the flow. At the initial stage, the fluid bends the plate



Fig. 4. Stream lines past the plate.

X. Shi, S.P. Lim / Journal of Computational Physics 226 (2007) 2028–2043 2035
to the flow direction. As the flux increases, the deformation of plate becomes large, as shown in (a) and (b). In
the second stage, when the pressure decreases, the flux decreases accordingly, and the hydrodynamic force on
the plate cannot balance the inner elastic force in the significantly deformed plate, thus the plate bounces back.
At this stage, the direction of the plate velocity is opposite to that of the main flow, resulting in a dramatic
relative motion of the plate with respect to the fluid. We can find, in (c), a circulation region appears at the
right-hand side of the plate. The swirl streamlines indicate that the more complex flow pattern is formed. Then
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the flow direction reverses, and the plate motion is in phase with the flow again. The similar plate deforma-
tions and flow patterns to those in the previous two stages are exhibited in the reversed direction, as illustrated
in (d)–(f).

In this numerical example, we also find the same restriction to the mesh size of Lagrange multiplier as in
[11] in 2D cases: the range of the Lagrange multiplier mesh size is about one to two times of the fluid mesh size.
Too fine Lagrange multiplier mesh would bring unphysical oscillation to the solution.

3.2. Flow past two spheres placed side by side

In this section, we discuss the proposed algorithm for the flow in complex geometry domains. The flow past
two identical rigid spheres is employed as an example. As shown in Fig. 5, two spheres with the diameter D are
placed side by side in a uniform flow. The flow direction is parallel to x axis and vertical to the line connecting
the sphere centers. h denotes the distance between the sphere centers. For convenience, the x–z plane contain-
ing the sphere centers is called MXZ plane and the x–y plane at the midway of two sphere centers is called
MXY plane. In current computation, the resolution of the sphere diameter is 28. Each sphere is divided into
10,293 tetrahedral elements with 2073 nodes. The undisturbed velocity U is set to 0.1 The Reynolds number is
based on the sphere diameter:
Re ¼ UD
m
; ð30Þ
where m is the kinematic viscosity.
We first investigate the flow at Re = 100 with the two spheres separated by h = 1.5D. The size of the com-

putation domain is 456 · 260 · 250. The inlet is 156 ahead from the sphere center. When Re < 200, the flow
reaches a steady status. Fig. 6 shows the distribution of streamwise velocity and the streamline on MXZ plane.
Fig. 5. Flow configuration.

Fig. 6. Streamwise velocity distribution and streamlines on MXZ plane at Re = 100 for h = 1.5D.
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In current configuration, the fluid flowing through the gap between the two spheres is accelerated, as indicated
in Fig. 6, the maximum value of streamwise velocity appears in the gap. That is so-called ‘nozzle effect’. The
nozzle effect increases the local Reynolds number and changes the shape of the wake. Fig. 6 also shows that
the wake behind each sphere is no longer axisymmetric in contrast with the wake of a single sphere. In order to
demonstrate the weak region more clearly, the 3D pathlines or streamlines are plotted in Fig. 7. We define the
local coordinates as the global coordinates translated to the center of the sphere with larger z value. Line A is
the pathline of the fluid particle starting from the circulating region in the weak at (19.0, 0.2,1.0) in the local
coordinate. The fluid particle swirls in the circulating region and approaches to the MXY plane, then exits the
circulating region and goes downstream. Lines B and C exhibit the pathlines identified by the initial positions
of the fluid particles at (0.0,15.0, 0.0) and (0.0,1.0,15.0), respectively. Both lines perform the S-shape patterns
without loop in the weak. Although the flow is not axisymmetric, it is still plane symmetric with respect to
MXY and MXZ planes. These phenomena match that in [26].

The quantitative comparisons on the pressure coefficient, the drag coefficient and the lift coefficient are
given in Fig. 8 and Table 3. The pressure coefficient is evaluated by:
Fig. 7. 3D pathlines in the weak at Re = 100 for h = 1.5D.
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Table 3
Comparison on the drag coefficient and lift coefficient at Re = 100 for h = 1.5D

Cd Cd0 Cl

Kim et al. [26] 1.215 1.105 0.0783
Tsuji et al. [27] 1.289 1.18 –
Present 1.288 1.188 0.0928

Cd0 is the drag coefficient for a single non-interactive sphere.
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Cp ¼
2ðp � p1Þ

qf U
2

; ð31Þ
where p1 is the undisturbed pressure. The drag coefficient is defined as:
Cd ¼
8F x

qf U
2pD2

: ð32Þ
And the lift coefficient:
Cl ¼
8F l

qfU
2pD2

; ð33Þ
where Fx and Fl are the components of force acting on the sphere in streamwise and lateral directions
separately.

Fig. 8 reveals that the pressure distribution is not symmetric between the top and bottom surface, which
leads to a contribution to the repelling lift force found in our computation. The increase of local Reynolds
number due to the nozzle effect causes local shear rate rising. In Table 3, the drag is increased compared to
the drag of a single non-interactive sphere.

Then we will observe vortices shedding behind the two spheres at Re = 300. The size of the computation
domain is 480 · 260 · 250. The inlet is 160 ahead from the sphere center. For a single sphere in a uniform flow,
when the Reynolds number reaches around 280 and below 360, the plane symmetric hairpin shaped vortices
are shed periodically behind the sphere. The orientation of the symmetric plane is arbitrary [29].

The vortical structure in the flow with the separation of h = 1.5D is visualized by the method proposed by
Jeong and Hussain [28] in Fig. 9. This distance is a strong coupled length for the spheres. It is found that the
wake of each sphere is still plane symmetric, but the directions of the symmetry planes are not arbitrary. Both
symmetry planes coincide with the plane contained the sphere centers, MXZ. Each individual wake oscillates
in the direction parallel to the symmetric plane, generating the plane symmetric hairpin vortices, e.g. A and C.
Fig. 9. Vortical structure at Re = 300 for h = 1.5D.



Fig. 10. Vortical structure at Re = 300 for h = 1.5D [29].

Table 4
Comparison on the Strouhal number at Re = 300

St/St0 St0

Schouveiler et al. [29] 0.836 0.136
Present 0.866 0.1294

St0 is the Strouhal number for a single non-interactive sphere.
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In the downstream, due to the interaction of the two wakes, the hairpin vortices out of the symmetric plane,
e.g. B and D, are formed. These formations of vortical structure can be compared with that in the DNS sim-
ulation in Fig. 10. It is also found that the direction of the lateral force exerted on each sphere is almost aligned
with the line connected with the centers of the spheres and there exist a proximately 180� phase shift between
the drag force, as reported in [29].

The oscillation of the weak is always measured by the Strouhal number:
St ¼ fvD
U

ð34Þ
where the fv is the shedding frequency of the wake. The quantitative comparisons are summarized in Table 4.

3.3. Spherical shell in a square duct flow

This model is an initial and basic step for further simulation of cell deformations in flow. The schematic is
shown in Fig. 11. In this model, thin-walled structure is involved. Either 2D shell elements [30] or 3D high-
order p-elements [31] are the choices to simulate the thin-walled structures. Unlike the 2D shell elements,
which need many extra efforts to avoid various kinds of locking, 3D p-elements avoid locking by choosing
sufficient high-order polynomials in lateral directions. Linear or quadratic polynomials in the transversal
direction are generally sufficient [33]. Furthermore, if the Gauss–Lobatto interpolation points are selected,
then the high-order accurate approximation and better convergent rate can be achieved, and the higher-order
Fig. 11. A spherical shell in a duct flow.
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polynomial oscillations on the boundary observed in case of the evenly distributed interpolation points [32]
can be suppressed. Another advantage is that no rotational DOF is required, which makes it convenient
for the geometrical nonlinear analysis. In our computation, we choose 5–6 order polynomials in the lateral
direction and quadratic order in the transversal direction. Before carrying out the fluid–structure simulation,
we first perform the element test on the problem known as pinched hemisphere with 18� hole.

As shown in Fig. 12 , two inward and two outward forces are imposed on a hemisphere with an 18� hole at
the top. Only one quarter of the hemisphere is taken into computation because of the symmetry conditions.
F

F

F

F

A

B

Fig. 12. Mesh1 and load configuration.

Fig. 13. Deformation at F = 200 (mesh1).
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Fig. 14. Load–deflection curve comparison.



Fig. 15. Spherical shell deformations at different time.
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The radius is 10 and the thickness is 0.04. The material properties are E = 6.825 · 107 and m = 0.3. Two meshes
are use for comparison: mesh1 discretizes the quarter hemisphere into four 6 · 6 · 3-node elements and mesh2
into four 7 · 7 · 3-node elements.

Our results on the deformation of the hemisphere are compared to those from [34] in Fig. 14, where the
corresponding value of load they used in the figures is the sum of the magnitudes at A and B, being the double
of F in our computation. The final deformation of the hemisphere at the maximum load, F = 200, is shown in
Fig. 13. The finer mesh, mesh2, provides more accurate results that agree better with the previous results.
However, from Figs. 13 and 14, mesh1 is good enough for qualitative study, and it is computationally more
economical than mesh2. We decide to employ-node element in the following example, which is mainly for the
qualitative investigation.

Now we turn to the simulation of spherical shell deformation in the duct flow. The size of fluid domain is
260 · 48 · 48 with respect to the x–y–z directions. The radius of the spherical shell is 15 and the thickness is
0.3. The spherical shell is discretized into 24 6 · 6 · 3-node elements and the initial position of the center point
is placed at (70, 16,16). The relaxation time, the streamwise pressure gradient and the fluid mass density are
given as 0.97, 3.5 · 10�5, 1.0, respectively. The solid has the same mass density as the fluid, and the material is
the neo-Hookean material with the same strain energy density per unit in Eq. (26). The material parameters
are l = 0.1 and k = 10.0. The flow starts from stationary state with all the velocities being zero.

The deformations of the shell and the slices of the streamwise velocity contours on the MXY plane at dif-
ferent times are illustrated in Fig. 15. In the straight duct flow, the streamwise velocity component is dominant
compared to those in the other two directions. It is obvious that the streamwise fluid velocities decrease from
the channel center to the wall. Such fluid velocity field causes the similar velocity distribution on the solid shell.
The streamwise velocity difference in the spanwise direction on the shell makes the parts near the central line
move faster than the parts relatively farther from the central line. So it can be found that the upwinding part of
the shell in the flow direction becomes more and more flat, and then turns concave. As the flow evolves, the
locations of the mesh grids in Fig. 15 indicate that the material points on the spherical shell are rolled over in
the concave. This deformation tendency is qualitatively similar to that in the cylindrical pipe in [35]. As dem-
onstrated in [35], the mechanism of the deformation often causes the physical instability of the shell, and in
some cases, the shell will never reach a steady state.

It is also found that, although the high-order element has the advantages mentioned earlier, it raises the
condition number of stiffness matrix, which reduces the convergence rate, especially when the upwinding part
of the shell is very flat in our numerical experiment.
4. Conclusion

In this paper, the lattice Boltzmann method is extended to solve the 3D fluid/elastic-body interaction prob-
lems by introducing the Lagrange multiplier and solid governing equations, and is successful in the test prob-
lems. In the developed LBM–DLM/FD method, the mesh for fluid flow is the fixed Eulerian mesh that avoids
the re-meshing procedure and has the capacity to deal with complex geometry. The mesh for solid motion is a
Lagrangian mesh so that the conventional schemes for the solution of solid deformation can be incorporated
easily. The method reserves the advantages of LBM and DLM/FD.

Some numerical experiments are conducted in the paper. On one hand, these experiments verify the algo-
rithm and illustrate the capability of the method to solve the fluid/elastic–structure problems and problems
with complex geometry. On the other hand, these experiments give the first step for further exploration of
more complicated problems.
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